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Abstract

This paper presents the results of calculations performed for the turbulent, incompressible ¯ow around a staggered array of tubes

for which carefully obtained experimental results are available as part of an established ERCOFTAC-IAHR test case. The Rey-

nolds-averaged Navier±Stokes equations are solved using a pressure-based ®nite volume algorithm, using collocated cell vertex store

on an unstructured and adaptive mesh of tetrahedra. Turbulence closure is obtained with a truncated form of a low-Reynolds

number k±e model developed by Yang and Shih. The computational domain covers all seven rows of tubes used in the experimental

study and periodic ¯ow is allowed to develop naturally. The results of the computations are surprisingly good and compare fa-

vourably with results obtained by others using a wide range of alternative k±e models for a single cylinder with periodic in¯ow and

out¯ow boundaries on structured meshes. Ó 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Many of the ¯ows of interest to engineers involve either
complex geometries or complex ¯ow features, and often the
two are found in combination. Still further complexity may
arise if the ¯ow also includes a mixture of incompressible and

compressible ¯ow sub-domains, such as the transonic primary
gas path and essentially incompressible secondary air path
which obtain in the case of turbomachinery blading with in-
ternal coolant passages. If computational methods are to be
applied to the simulation of such ¯ows it is essential to provide
meshes of su�cient complexity and ®neness to resolve the
important features of the geometry and ¯ow, and the com-
putational technique may be required to simulate a wide range
of Mach numbers. Conventional structured mesh algorithms
can employ patched grids (Thomas et al., 1989) and embedded
meshes (Ng, 1992) to provide the necessary mesh support; and
if the simulation involves a wide range of Mach numbers, a
pressure-based algorithm may be used (Shyy et al., 1992).
Alternatively, the engineer may now take advantage of the
powerful ¯exibility provided by the unstructured mesh ®nite
volume approach (Jameson and Baker, 1987), which allows for
the routine meshing of very complex geometries and adaptive
mesh re®nement on important ¯ow features, although these
new methods have generally been restricted to Mach numbers
above approximately 0.3.

To extend the range of application of the unstructured
mesh ®nite volume method to complex incompressible ¯ows a
pressure-based method has been developed (Watterson, 1994).
The pressure-basis allows low-speed ¯ows to be calculated,
whilst retaining the use of unstructured meshes makes it pos-
sible to apply the method to very complex geometries. The
low-Reynolds number model of Yang and Shih (1993) has
been used because it avoids the need for a turbulent viscosity
damping function based on wall normal distance: a length
scale not easily obtained when using unstructured meshes. In
order to test the low speed accuracy of the numerical method it
has been applied to the turbulent, incompressible ¯ow about a
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Notation

Cl turbulent viscosity constant of proportionality
fl wall damping function
ho stagnation enthalpy per unit mass
I unit matrix
k turbulence kinetic energy
P turbulent kinetic energy production term
R wall damping parameter (form of turbulence

Reynolds number)
S,Sij modulus and component of strain rate tensor
Tt turbulence time scale
u mean velocity vector
u0; v0 turbulent velocity ¯uctuations
y� scaled wall normal distance
c ratio of speci®c heats
e turbulence kinetic energy dissipation rate
l,lt laminar and turbulent dynamic viscosity
m kinematic viscosity
q density
sR Reynolds stress tensor
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staggered bundle of tubes reported by Simonin and Barcouda
(1988). This test case was used at the 2nd ERCOFTAC-IAHR
Workshop on Re®ned Flow Modelling (Leschziner and
Launder, 1993). This ¯ow provides a challenging test case for
both the numerical method and the turbulence model em-
ployed in the present work. The results of the calculations were
reported brie¯y at the 3rd ERCOFTAC-IAHR Workshop on
Re®ned Flow Modelling (Watterson et al., 1994) but are dis-
cussed and compared with both experimental and other model
results in greater detail here.

2. Numerical method

The numerical method used in this work has been described
in detail by Watterson (1994). The scheme is based upon a
straightforward interpretation of the concept of a pressure
correction method. However, whereas traditional pressure
correction methods (e.g. Issa and Lockwood, 1977; Patankar,
1980) have employed velocity as the subject of the momentum
equations, this method follows the example of Harlow and
Amsden (1971) and McGuirk and Page (1990) by treating
momentum as such. This results in a method not limited to low
speed ¯ows and good shock capturing properties. The algo-
rithm employs collocated cell-vertex store in order to obviate
the di�culties and disadvantages of implementing a non-col-
located (staggered) mesh within the unstructured methodology.
The convective ¯uxes are accumulated in the spatially centred
fashion of Jameson and Baker (1987) rather than in an upwind
manner, and arti®cial dissipation is added in order to control
velocity-pressure decoupling and the shock capturing proper-
ties. The viscous ¯uxes are evaluated in the fashion of Mavriplis
et al (1989). The whole scheme is integrated to steady state via
explicit four stage Runge±Kutta time marching.

2.1. Governing equations

The numerical method solves discretisations of the conti-
nuity and Navier±Stokes equations:

oq
ot
�r � qu � 0; �1�

oqu
ot
�r � qu� 
 u� pI ÿ s� � 0: �2�

The full energy equation is not used in this work. Instead the
¯ow is assumed to be isenthalpic, so that the energy equation
reduces to

ho � cp
cÿ 1� �q�

1

2
uiui: �3�

Pressure, density and temperature are further related through
the equation of state. In the Reynolds-averaged form of the
equations the viscous stress tensor, s, comprises laminar, sl,
and turbulent, sR, contributions whose tensor components are
given by,
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Closure is provided by the k±e turbulence model.
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where the constants take their usual values, i.e. rk � 1.0,
re� 1.3, C1e� 1.44 and C2e� 1.92. Yang and Shih (1993)
choose Ce� 1.0. The time scale Tt is described in Section 4.

2.2. Formulation of the pressure correction method

Suppose that time is discretised and let the superscript n
refer to the conditions at the beginning of a cycle, n+1 to
conditions at the end, and * to the intermediate conditions.
Then consider an explicit, semi-discretisation of Eq. (2) with
time step dt,

qu� ÿ qun

dt
� ÿr � qu� 
 u�n ÿrpn �r � sn: �8�

The intermediate momentum ®eld qu� is obtained from the
solution of Eq. (8). In general, qu� will not satisfy the conti-
nuity equation. The ®nal values of momentum and pressure
may be sought by applying corrections, denoted � �0,
qun�1 � qu� � qu0 �9�
and

pn�1 � pn � p0: �10�
Since the values at the end of the cycle are to be solutions of
the continuity and momentum equations, then,

qn�1 ÿ qn

dt
�r � qun�1 � q0

dt
�r � qun�1 � 0 �11�

and

qun�1 ÿ qun

dt
� ÿr � qu� 
 u�n ÿrpn�1 �r � sn: �12�

Subtracting Eq. (8) from Eq. (12) and substituting Eqs. (9) and
(10) gives the relationship between the pressure and momen-
tum corrections,

qu0

dt
� qun�1 ÿ qu�

dt
� ÿrp0: �13�

Taking the divergence of Eq. (13) leads to

r � qun�1 ÿr � qu�

dt
� ÿr2p0: �14�

The divergence of the intermediate ®eld qu� can be easily
calculated

r � qu� � QD: �15�
Then substituting Eqs. (11) and (15) into Eq. (14) gives

q0

dt
ÿ dtr2p0 � ÿQD: �16�

The energy Eq. (3) can be used to relate the density change, q0,
to the pressure correction, assuming negligible e�ect from the
corrected velocity ®eld, i.e.

q0 � cp0

cÿ 1� � ho ÿ 1
2
uiui

ÿ � �17�

or

q0 � Sqp0; �18�
where

Sq � c

cÿ 1� � ho ÿ 1
2
uiui

ÿ � : �19�
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Substituting Eq. (17) into Eq. (16) gives

Sq

dt
p0 ÿ dtr2p0 � ÿQD: �20�

Eq. (20) is the Poisson equation for the pressure correction,
solution of which provides the correction q0 which is substi-
tuted into Eq. (13) to give the correction to the momentum
®eld.

2.3. Implementation of the algorithm

When the solution domain is discretised, implementation of
a scheme to solve the above equations requires the following
steps. The momentum di�erence equations are solved to obtain
the intermediate momentum ®eld; the momentum residuals,
i.e. the right hand side of Eq. (6), are obtained by a nominally
second order spatially centred ®nite volume method. The di-
vergence defect, QD, is then evaluated, also by the spatially
centred ®nite volume method, and the Poisson equation for the
pressure correction is solved. The corrections can then be
calculated and applied; under-relaxation is employed at this
stage. Finally the usual boundary conditions are applied.
These steps are repeated to convergence. The di�erence
equations for k and e are cycled to convergence in parallel with
the momentum equations.

2.4. Arti®cial dissipation

Arti®cial dissipation is required to control the velocity±
pressure decoupling of the solution and shock capture. It is
particularly important that the arti®cial dissipation operators
are constructed in such a way that they do not corrupt the
accuracy of the scheme. The generally accepted practice is to
employ an adaptive mix of second and fourth di�erence
smoothing operators ± in the vicinity of shocks the second
di�erence smoothing is switched on and the fourth di�erence is
switched o�. Of course, for low speed ¯ow calculations such as
those reported here, only the fourth di�erence smoothing is
used. In this work, the arti®cial dissipation operator of
Mavriplis (1990) was used.

3. Mesh generation

The meshes used for the present calculations were generated
using an advancing front method. The mesh generator ®rst
develops a two-dimensional mesh in the plane of interest; this
is then expanded into the third dimension and the resulting
prismatic elements are divided into tetrahedra. For the results
reported here, the two-dimensional mesh was expanded to be
initially only three nodes deep; the solutions which are pre-
sented have been taken from slices through the mid-planes of
the domain. Unfortunately, mesh re®nement for such two-di-
mensional calculations is ine�cient because the re®nement
process is three-dimensional and generates excessive extra
mesh in the third dimension. However, numerical experiments
have shown that the use of solution adaptive mesh re®nement
is still able to provide cpu savings under these circumstances
(Watterson et al., 1998).

4. Turbulence model

The k±e turbulence model developed by Yang and Shih
(1993) has several features that make it ideally suited for im-
plementation on the unstructured meshes used in this work.
First, the model employs the standard model constants, and
reduces to the standard k±e model away from the wall. Second,

the model uses a turbulent time scale that has the Kolmogorov
time scale as its lower bound; thus the wall singularity is re-
moved and the model can be integrated to the wall without
recourse to a pseudo-dissipation variable. Finally, the inde-
pendent variable in the eddy viscosity damping function is
evaluated from the local strain rates of the ¯ow rather than the
y� value or wall normal distance. These latter parameters are
of ambiguous value in separated or complex three-dimensional
¯ows, and are, moreover, very di�cult to evaluate on un-
structured meshes. The use of local strain rate also provides a
necessary additional strain sensitivity similar to that which
appears in the alternative RNG k±e model and other non-
linear k±e schemes applied to the same test case (see Leschziner
and Launder 1993).

Although the model is best described by its developers, a
basic description will be given here. The turbulent viscosity lt

is given by,

lt � qClflkTt; �21�
where Tt is the time scale for turbulent ¯ows and is written,

Tt � k
e
� l

qe

� �1=2

: �22�

The ®rst term on the right hand side of Eq. (22) is the con-
ventional time scale; the second term is the Kolmogorov time
scale. Away from the wall, the ®rst term is very much larger
than the second, but as the wall is approached the ®rst term
tends to zero because of the wall boundary condition on k, and
Tt tends toward the Kolmogorov time scale. Since the wall
value of the time scale is non-zero, the boundary condition for
the dissipation equation is well behaved. The damping func-
tion, fl, takes account of the e�ect of the wall on the eddy
viscosity. It is given by,

fl � 1
� ÿ exp

ÿÿ a1Rÿ a2R2 ÿ a3R3
��1=2

; �23�
where the parameter R is de®ned as,

R � qk
Sl

�24�

and S is the modulus of the strain rate tensor, Sijeiej, of the
mean velocity ®eld,

S � 2SijSij

ÿ �1=2
: �25�

The coe�cients in Eq. (23) are constants given by Yang and
Shih as a1 � 3� 10ÿ4, a2 � 6� 10ÿ5 and a3 � 2� 10ÿ6. The
parameter R was chosen as the independent variable because
turbulent channel ¯ow calculations showed that it increases
monotonically with y� near the wall region. Since the tensor
components Sij must be evaluated to obtain the turbulent ki-
netic energy production term the calculation of R requires little
extra computation.

The model of Yang and Shih also includes the second-mean
velocity derivative term Cemmtui;jkui;jk in the dissipation equa-
tion. This is equivalent to the additional E term which appears
in some other low Re formulations and which models the
production of e in the near wall region by the gradients in e.
Yang and Shih chose a value of 1.0 for the constant Ce based
on the model performance in turbulent channel ¯ows. This is
half the value used in similar low Reynolds number k±e
models. However, signi®cant computational e�ort is required
to calculate this term when working with three-dimensional
unstructured meshes, and it has been dropped from the model.
For this reason, the model used in this work is best described
as a truncated version of the Yang and Shih model. The in-
¯uence of this decision will be discussed in the next section.
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The wall boundary conditions for the Yang and Shih model
have been retained. k is set to zero on solid walls. The wall
boundary condition for e is

ew � 2m
d
���
k
p

dy

 !2

: �26�

5. Results and discussion

5.1. Fully developed channel ¯ow

The numerical method has been tested against fully devel-
oped turbulent channel ¯ow. The Reynolds number of the ¯ow
is 395, based on the friction velocity and the channel depth.
The full span of the channel was meshed with 99 points. 11
points were used in the streamwise direction and the through-
¯ow boundaries were made periodic. In Fig. 1 the solution is
compared with DNS data of Kim et al. (1987). The prediction
is satisfactory, though several shortcomings ought to be
mentioned. The centreline velocity is under predicted by 5%.

The peak value of k is well reproduced, but towards the
centreline the values are over predicted. The wall value of e is
too large, and this may be the result of the second-mean ve-
locity derivative term neglected in the constitutive equation for
dissipation rate. However, the pro®le of e does follow the DNS
results quite well, albeit showing a tendency to over prediction
away from the wall.

5.2. Tube bundle geometry

The experiments performed by Simonin and Barcouda
(1988) and the measurements released through the 2nd ER-
COFTAC±IAHR Workshop on Re®ned Flow Modelling
(Leschziner and Launder 1993) have been used as the basis of
the calculations reported here. The experimental test section
consisted of seven horizontal, staggered rows of 21.7 mm di-
ameter rods, across which water ¯owed at an average velocity
of 1.06 ms±1, giving a Reynolds number, based on the rod
diameter, of 18 ´ 103. This arrangement is similar to that of a
heat exchanger, but for the test case heat transfer was not
considered. LDA measurements were taken in the vicinity of
the ®fth tube where the ¯ow was observed to have become

Fig. 1. Turbulent Channel ¯ow at Ret � 395 DNS (Yang and Shih, 1993); Calculation.
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periodic, and experimental data along ®ve traverse planes was
released through the ERCOFTAC±IAHR workshop.

Assuming fully axially periodic, steady ¯ow (which the
experiments showed to have been established between the 4th
and 5th rows) the computational domain could have been re-
stricted to the single ¯ow passage shown in Fig. 2, as most
other ¯ow modellers have done. However, for this work the
full cascade of seven tubes was chosen as the computational
domain, and this, together with the planes from which calcu-
lated values were extracted for comparison with measurements
is shown in Fig. 3. The point O is in the centre of the quad-
rangle of adjacent tubes. Results were extracted at: x�Xi

along AO; x�Xr along BC; x�Xb along DE; y�Ywake along
FO; and y�Yimpact along OG. The upper and lower boundaries
were speci®ed as periodic. The plane x�Xi was chosen as the
periodic in¯ow/out¯ow boundary for many of the structured
mesh computations reported by Leschziner and Launder
(1993).

The visualisation planes from the original and ®nal meshes
are shown in Figs. 4(a) and (b), respectively. The initial mesh
contained 17 255 cells and 4605 nodes, with 1535 nodes in the
visualisation plane. After a solution had been obtained on the
initial mesh, the cells adjacent to the surfaces of all the tubes
and in the region from upstream of the fourth tube to down-
stream of the ®fth tube were re®ned. A solution was obtained
on this mesh and the ®nal mesh was created by re®ning again
the cells adjacent to the surfaces of the tubes, although this
re®nement was restricted to the region from 60% chord of the
third tube to 35% chord of the sixth tube. It is estimated that

the y� value of mesh at the 12 OÕclock position on the fourth
tube is about 15.

The ®nal mesh contained 181 257 cells and 38 586 nodes,
with 5702 nodes in the visualisation plane, i.e. a tenfold in-
crease in the number of cells and eight times as many nodes
(but less then a fourfold increase in the number of nodes in the
visualisation plane). Two levels of uniform two-dimensional

Fig. 2. Restricted domain for periodic tube bundle ¯ow.

Fig. 3. Full domain for tube bundle ¯ow, showing positions at which

results were extracted.

Fig. 4. (a) Initial mesh; (b) ®nal mesh after two levels of adaptive mesh

re®nement.

Fig. 5. Contours of velocity predicted on initial mesh.

Fig. 6. (a) Contours of velocity predicted on ®nal mesh; (b) velocity

vectors predicted on ®nal mesh in region of most intense mesh re-

®nement.
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re®nement would have resulted in a sixteen fold increase in
the numbers of cells and nodes. Thus, because mesh re®ne-
ment was deliberately focused on the region of the solution
domain where axially periodic ¯ow was expected to be es-
tablished and from which the results would be extracted, a
saving of between 37% and 50% in mesh required was ob-
tained.

5.3. Prediction of through ¯ow topology

For reference, the solution on the initial mesh is shown in
Fig. 5, which shows the velocity contours. Periodic ¯ow is
established in the region of the fourth and ®fth tubes and the
¯ow is largely symmetric (there is a small periodic asymmetry).
The peak velocity is approximately 16 m s±1. However, the

Fig. 7. Results extracted at x�Xi.
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velocity vectors (not shown) indicate that the ¯ow remains
attached to the trailing-edge stagnation points on the tubes.

The solution on the ®nal mesh is shown in Fig. 6. As Fig
6(a) shows, the velocity contours are now more symmetric
than those obtained on the initial mesh. The ¯ow about the
fourth and ®fth tubes is periodic. Again the peak velocity is 16
msÿ1. The velocity vectors are shown in Fig. 6(a). A region of
¯ow reversal is now seen behind the third, fourth and ®fth

tubes, where the cells adjacent to the aft surfaces have been
re®ned twice.

Comparing Figs. 5 and 6 it may be seen that the initial mesh
is su�cient to predict the periodicity of the ¯ow. However, a
threshold level of mesh support is required to resolve the
boundary layers without which the separation zone is not
predicted properly, if at all. Accurate prediction of the sepa-
ration zone is vital because its extent e�ectively de®nes the

Fig. 8. Results extracted at x�Xr.
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through-¯ow geometry. Moreover, the state of the boundary
layers would be of critical importance if heat transfer predic-
tions were to be performed.

5.4. Mean ¯ow predictions

Mean ¯ow values and Reynolds stresses have been ex-
tracted from the solution on the ®nal mesh at the ®ve stations

described above and shown in Fig. 3. These have been plotted
together with the measurements of Simonin and Barcouda
(1988), and the results are presented in Figs. 7±11. Because the
calculation and the experiment were performed with di�erent
¯uids, a reference velocity was chosen that gave the best
agreement between the calculated and measured axial velocity
pro®les at the traverse plane x�Xi ± see Fig. 7 (a). A reference
velocity of 7.5 m s±1 was chosen, and Fig. 7(a) indicates that

Fig. 9. Results extracted at x�Xb.
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the mean axial ``in¯ow'' velocity was 12.3 m s±1 giving a
Reynolds number of 21 ´ 103, slightly higher than the experi-
mental value of 18 ´ 103.

The axial and transverse velocity pro®les at x�Xr are
presented in Fig. 8(a) and (b), respectively. The transverse
extent of the separation region may be slightly under predict-
ed, but the magnitude of the recirculation region is close to the
expected level and there is some uncertainty as to how close to

the solid walls the LDA measurements were taken: zero ve-
locity values being speci®ed both within solid surfaces and in
¯ow regions close to these which could not be accessed by the
measuring equipment (cf. Fig. 7(a)). Fig. 9(a) and (b) show the
axial and transverse velocity pro®les at x�Xb. Again the axial
velocity pro®le is well predicted, but the magnitude of the
transverse velocity is underestimated. Overall the calculated
mean ¯ow values compare well with the measurements. In

Fig. 10. Results extracted at y�Ywake.
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common with most of the models presented at the 2nd
ERCOFTAC-IAHR Workshop on Re®ned Flow Modelling
(Leschziner and Launder, 1993) the axial velocity variations in
the wake (accelerating) and impact (decelerating) regions, Figs.
10(a) and 11(a), respectively, are under predicted, and the axial
extent of the separation zone appears to be over predicted.
These de®ciencies point to the need for more selective mesh
re®nement in both the impingement and recirculation regions.

These predictions proved to be better than some initial results
obtained with the same code using the turbulence Reynolds
number based Dawes low Re k±emodel (Dawes, 1993) on a
mesh with only half the resolution of the present ®ne mesh,
which were in turn equivalent to the best (Launder-Sharma) low
Re k±e model predictions reported at the 2nd ERCOFTAC-
IAHR workshop. However, of the other strain dependent
schemes which have so far been applied to this test case both

Fig. 11. Results extracted at y�Yimpact.
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the Kato±Launder and RNG forms of the k±e model consid-
erably over predict the extent of the separation region behind
the tubes. This is a serious de®ciency and highlights a major
achievement of the present scheme, since the extent of the
separation zones e�ectively de®nes the geometry for the
through ¯ow. The Kato±Launder irrotational strain correction
appears to need further calibration for the type of ¯ow cur-
vatures experienced by this through ¯ow; while the RNG k±e
model, which has been widely shown to produce excellent
predictions of separation at a back step seems far less suc-
cessful when the separation point is not ®xed.

5.5. Reynolds stress predictions

Predicted pro®les of the Reynolds stresses are included for
completeness but will not be discussed in detail as it is recog-
nised that either a non-isotropic, non-linear k±e or a full
Reynolds stress transport approach is required to capture the
full turbulence anisotropy e�ects. Generally, the magnitudes
and trends of the turbulence quantities are predicted quite well.
However, there is a clear discrepancy between the measure-
ments and predictions in the cross ¯ow variations of the v0v0
normal stress in the region y� 15±20 mm (Figs. 7±9) and in the
streamwise variations both upstream and downstream of the
tubes (Figs. 10(d) and 11(d) respectively). In contrast the u0u0
normal stress distribution is well predicted, with the exception
of the cross ¯ow variation at the base of the tube (Fig. 8(c)),
and overall the Reynolds stress predictions compare favour-
ably with those reported for other k±e models (Leschziner and
Launder, 1993). In particular the u0v0 Reynolds shear stress
variations have been well predicted everywhere in both mag-
nitude and trend; this explains why the model has been able to
do such a good job of predicting the mean ¯ow ®eld even
though it cannot describe the anisotropy of the Reynolds stress
®eld correctly. Even for u0v0 there are discrepancies, as for
example in the cross ¯ow variation shown in Fig. 9(e) where it
appears that the numerical method has not captured the con-
centration of the Reynolds shear stress in the inner portion of
the separated ¯ow region.

6. Conclusions

The calculation of low speed, turbulent ¯ow in an array of
staggered tubes has been presented. Both the predicted mean
values and Reynolds stresses show encouraging agreement with
experimental measurements. The implementation of the tur-
bulence model appears to be e�ective, and the results compare
favourably with those obtained by structured mesh solvers
designed speci®cally for incompressible ¯ow and reported at
the 2nd and 3rd ERCOFTAC±IAHR workshops (Leschziner
and Launder, 1993 and Hanjalic and Hadzic, 1998). Overall,
the agreement between the predictions and experiments is en-
couraging and this validation case gives con®dence in the low
speed, viscous capability of the solver and the suitability of the
Yang and Shih low Re k±e turbulence model for separating
¯ows in complex, con®ned geometries. The bene®ts of adaptive
mesh re®nement have also been illustrated, with up to a 50%
saving in mesh required for resolution obtained.
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